@article{ATM30059,
author = {Yiting Fan and Randolph H. L. Wong and Alex Pui-Wai Lee},
title = {Three-dimensional printing in structural heart disease and intervention},
journal = {Annals of Translational Medicine},
volume = {7},
number = {20},
year = {2019},
keywords = {},
abstract = {Three-dimensional (3D) printing refers to the process by which physical objects are built by depositing materials in layers based on a specific digital design. It was initially used in manufacture industry. Inspired by the technology, clinicians have recently attempted to integrate 3D printing into medical applications. One of the medical specialties that has recently made such attempt is cardiology, especially in the field of structural heart disease (SHD). SHD refers to a group of non-coronary cardiovascular disorders and related interventions. Obvious examples are aortic stenosis, mitral regurgitation, atrial septal defect, and known or potential left atrial appendage (LAA) clots. In the last decade, cardiologists have witnessed a dramatic increase in the types and complexity of catheter-based interventions for SHD. Current imaging modalities have important limitations in accurate delineation of cardiac anatomies necessary for SHD interventions. Application of 3D printing in SHD interventional planning enables tangible appreciation of cardiac anatomy and allows in vitro interventional device testing. 3D printing is used in diagnostic workup, guidance of treatment strategies, and procedural simulation, facilitating hemodynamic research, enhancing interventional training, and promoting patient-clinician communication. In this review, we attempt to define the concept, technique, and work flow of 3D printing in SHD and its interventions, highlighting the reported clinical benefits and unsolved issues, as well as exploring future developments in this field.},
issn = {2305-5847}, url = {https://atm.amegroups.org/article/view/30059}
}