How to cite item

Translational assessment of mitochondrial dysfunction of pancreatic cancer from in vitro gene microarray and animal efficacy studies, to early clinical studies, via the novel tumor-specific anti-mitochondrial agent, CPI-613

  
@article{ATM3916,
	author = {King C. Lee and Claudia Maturo and Candida N. Perera and John Luddy and Robert Rodriguez and Robert Shorr},
	title = {Translational assessment of mitochondrial dysfunction of pancreatic cancer from in vitro gene microarray and animal efficacy studies, to early clinical studies, via the novel tumor-specific anti-mitochondrial agent, CPI-613},
	journal = {Annals of Translational Medicine},
	volume = {2},
	number = {9},
	year = {2014},
	keywords = {},
	abstract = {Study rationale and objectives: Via genetic alterations, malignant transformation and proliferation are associated with extensive alterations of mitochondrial energy metabolism of tumor cells. Thus, inhibition of the altered form of mitochondrial energy metabolism of tumor cells may be an effective therapy for cancers. This study performed translational assessment of mitochondrial dysfunction of pancreatic cancer from in vitro gene microarray and animal efficacy studies, to early clinical studies, via the novel tumor-specific anti-mitochondrial agent, CPI-613.
Methods: The gene profiles of BxPC-3 human pancreatic tumor cells and non-transformed NIH-3T3 mouse fibroblast cells (negative control), after CPI-613 or sham treatment, were assessed and compared using microarray technique. The anti-cancer efficacies of CPI-613 and Gemcitabine were assessed and compared in mice with xenograft from inoculation of BxPC-3 human pancreatic tumor cells, based on the degree of tumor growth inhibition and prolongation of survival when compared to vehicle treatment. The anti-cancer activities, according to overall survival (OS), of CPI-613 alone and in combination with Gemcitabine were assessed in patients with Stage IV pancreatic cancer.
Results: Microarray studies indicated that CPI-613 down-regulated the expression of Cyclin D3, E1, E2, F, A2, B1 and CDK2 genes of BxPC-3 pancreatic cancer cells but not non-transformed NIH-3T3 mouse fibroblast cells (negative control). In mice with pancreatic carcinoma xenografts, four weekly intraperitoneal injections of either CPI-613 (25 mg/kg/administration) or Gemcitabine (50 mg/kg/administration) inhibited tumor growth and prolonged survival when compared to vehicle treatment. The degree of tumor growth inhibition was ~2×, and prolongation of survival was ~4×, greater with CPI-613 treatment than with Gemcitabine treatment. In patients with Stage IV advanced pancreatic cancer, CPI-613 at 420-1,300 mg/m2, given twice weekly for three weeks followed by a week of rest (i.e., 3-week-on-1-week-off) as monotherapy, provided median OS of 15 months in three patients. CPI-613 at 150-320 mg/m2 given twice weekly on the 3-week-on-1-week-off dosing schedule, coinciding with Gemcitabine (1,000 mg/m2) given once weekly on the 3-week-on-1-week-off dosing schedule, provided median OS of 17.8 months in four patients. These median OS values from CPI-613 monotherapy and CPI-613 + Gemcitabine treatment tend to be longer than those in patients treated with Abraxane + Gemcitabine combination or FOLFININOX (median OS ~12 months).
Conclusions: The dysfunctional mitochondria of pancreatic cancer cells was translationable from in vitro gene alteration and animal tumor model studies to patients with advanced Stage IV pancreatic cancer, as reflected by the anti-cancer activities of the tumor-specific anti-mitochondrial agent, CPI-613, in these studies.},
	issn = {2305-5847},	url = {https://atm.amegroups.org/article/view/3916}
}