Review Article
Liquid biopsies in lung cancer—time to implement research technologies in routine care?
Abstract
Lung cancer is the leading cause of cancer mortality. A substantial progress in the understanding of lung cancer biology has resulted in several promising targeted therapies for advanced disease. Druggable targets today include point mutations such as EGFR, BRAF and re-arrangements in genes such as ALK and ROS1. Liquid biopsies collecting e.g., circulating tumor DNA (ctDNA) reflects overall tumor information and is not biased by analyzing of only a small fraction of the tumor and is always accessible in contrast to the lung cancer tissue. Technological advances in detection of low frequency mutation variants in ctDNA have made it the dominating liquid biopsy platform in terms of utility and sensitivity. Circulating DNA or RNA may possible be used to define populations with higher risk of developing lung cancer, thus reducing screening cohorts and increasing the positive predictive value of screening. Blood based-tests may also aid to identify genetic alterations several weeks prior to radiologically verified recurrence and may be of great value in the follow-up of lung cancer patients. Besides being an alternative to invasive biopsies in selected cases, liquid biopsies offer a unique possibility to monitor treatment response following medical treatment as well as treatment response and resistance development after targeted therapy, giving a possibility to modify the treatment after the genetic profile of the tumor. Ideally, genetic alterations found in ctDNA could be tracked in real-time discriminating between fast-growing life-threatening tumors from more indolent slow growing tumors or premalignant growth that are of no concern for the wellbeing of the patient. This review focuses on future perspectives of liquid biopsies in lung cancer care for different clinical settings and present current technological platforms for further discussion of possible strategies for implementation of liquid biopsies in lung cancer.