Review Article


The basics of respiratory mechanics: ventilator-derived parameters

Pedro Leme Silva, Patricia R. M. Rocco

Abstract

Mechanical ventilation is a life-support system used to maintain adequate lung function in patients who are critically ill or undergoing general anesthesia. The benefits and harms of mechanical ventilation depend not only on the operator’s setting of the machine (input), but also on their interpretation of ventilator-derived parameters (outputs), which should guide ventilator strategies. Once the inputs—tidal volume (VT), positive end-expiratory pressure (PEEP), respiratory rate (RR), and inspiratory airflow (V’)—have been adjusted, the following outputs should be measured: intrinsic PEEP, peak (Ppeak) and plateau (Pplat) pressures, driving pressure (ΔP), transpulmonary pressure (PL), mechanical energy, mechanical power, and intensity. During assisted mechanical ventilation, in addition to these parameters, the pressure generated 100 ms after onset of inspiratory effort (P0.1) and the pressure-time product per minute (PTP/min) should also be evaluated. The aforementioned parameters should be seen as a set of outputs, all of which need to be strictly monitored at bedside in order to develop a personalized, case-by-case approach to mechanical ventilation. Additionally, more clinical research to evaluate the safe thresholds of each parameter in injured and uninjured lungs is required.

Download Citation