Original Article
Achyranthes bidentata polypeptide k suppresses neuroinflammation in BV2 microglia through Nrf2-dependent mechanism
Abstract
Background: Activated microglia play a critical role in regulating neuroinflammatory responses in central nervous system. Previous studies have shown that Achyranthes bidentata polypeptide k’s (ABPPk’s) neuroprotective effects are partly due to its anti-inflammatory effect, but the mechanism remains unknown. This study is aimed to investigate the anti-inflammatory effect of ABPPk on lipopolysaccharide (LPS)-activated neuroinflammation in BV2 microglia.
Methods: We pretreated BV2 microglia with different concentrations of ABPPk (0.04–5 µg/mL) for 30 minutes, and then stimulated microglia with LPS for 24 hours. Pro-inflammatory mediators including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), nitric oxide (NO) and prostaglandin E2 (PGE2) production were measured by enzyme-linked immunosorbent assay (ELISA) kits. Inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), phosphorylated nuclear factor kappa B (NF-κB), heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2) expression levels were detected by western blot. Glutathione (GSH) level was measured by GSH-Glo™ Glutathione assay. Immunofluorescent staining was used to detect the nuclear translocation of NF-κB and Nrf2. BV2 microglia transfected with Nrf2 siRNA were used to investigate the effect of Nrf2 on the anti-inflammatory activity of ABPPk.
Results: ABPPk (0.2–5 µg/mL) reduced the iNOS mediated NO and COX-2 mediated PGE2 production significantly in LPS-activated BV2 microglia. ABPPk (1 and 5 µg/mL) also suppressed the production of TNF-α and IL-6 significantly. NF-κB is phosphorylated and translocated into nuclear in LPS-activated BV2 microglia, but ABPPk is shown to inhibit the phosphorylation and translocation of NF-κB in a concentration-dependent way. ABPPk increased the protein expression levels of HO-1 and Nrf2, as well as the GSH content in BV2 microglia. Immunofluorescent staining showed that ABPPk also promoted nuclear translocation of Nrf2. After knocking down Nrf2 in BV2 cells with siRNA interference, ABPPk’s inhibitory effect on pro-inflammatory mediators also disappeared.
Conclusions: The present study suggests that ABPPk inhibits neuroinflammation in BV2 microglia through Nrf2-dependent mechanism. This provides some strong evidence for the potential of this neuroprotective natural compound to treat neurodegenerative diseases such as ischemic stroke and Parkinson’s disease.
Methods: We pretreated BV2 microglia with different concentrations of ABPPk (0.04–5 µg/mL) for 30 minutes, and then stimulated microglia with LPS for 24 hours. Pro-inflammatory mediators including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), nitric oxide (NO) and prostaglandin E2 (PGE2) production were measured by enzyme-linked immunosorbent assay (ELISA) kits. Inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), phosphorylated nuclear factor kappa B (NF-κB), heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2) expression levels were detected by western blot. Glutathione (GSH) level was measured by GSH-Glo™ Glutathione assay. Immunofluorescent staining was used to detect the nuclear translocation of NF-κB and Nrf2. BV2 microglia transfected with Nrf2 siRNA were used to investigate the effect of Nrf2 on the anti-inflammatory activity of ABPPk.
Results: ABPPk (0.2–5 µg/mL) reduced the iNOS mediated NO and COX-2 mediated PGE2 production significantly in LPS-activated BV2 microglia. ABPPk (1 and 5 µg/mL) also suppressed the production of TNF-α and IL-6 significantly. NF-κB is phosphorylated and translocated into nuclear in LPS-activated BV2 microglia, but ABPPk is shown to inhibit the phosphorylation and translocation of NF-κB in a concentration-dependent way. ABPPk increased the protein expression levels of HO-1 and Nrf2, as well as the GSH content in BV2 microglia. Immunofluorescent staining showed that ABPPk also promoted nuclear translocation of Nrf2. After knocking down Nrf2 in BV2 cells with siRNA interference, ABPPk’s inhibitory effect on pro-inflammatory mediators also disappeared.
Conclusions: The present study suggests that ABPPk inhibits neuroinflammation in BV2 microglia through Nrf2-dependent mechanism. This provides some strong evidence for the potential of this neuroprotective natural compound to treat neurodegenerative diseases such as ischemic stroke and Parkinson’s disease.