Review Article on Toward Precision Medicine in Neurological Diseases
Toward precision medicine in Parkinson’s disease
Abstract
Precision medicine refers to an innovative approach selected for disease prevention and health promotion according to the individual characteristics of each patient. The goal of precision medicine is to formulate prevention and treatment strategies based on each individual with novel physiological and pathological insights into a certain disease. A multidimensional data-driven approach is about to upgrade “precision medicine” to a higher level of greater individualization in healthcare, a shift towards the treatment of individual patients rather than treating a certain disease including Parkinson’s disease (PD). As one of the most common neurodegenerative diseases, PD is a lifelong chronic disease with clinical and pathophysiologic complexity, currently it is treatable but neither preventable nor curable. At its advanced stage, PD is associated with devastating chronic complications including both motor dysfunction and non-motor symptoms which impose an immense burden on the life quality of patients. Advances in computational approaches provide opportunity to establish the patient’s personalized disease data at the multidimensional levels, which finally meeting the need for the current concept of precision medicine via achieving the minimal side effects and maximal benefits individually. Hence, in this review, we focus on highlighting the perspectives of precision medicine in PD based on multi-dimensional information about OMICS, molecular imaging, deep brain stimulation (DBS) and wearable sensors. Precision medicine in PD is expected to integrate the best evidence-based knowledge to individualize optimal management in future health care for those with PD.