Original Article
Elevated d-dimer cut-off values for computed tomography pulmonary angiography—d-dimer correlates with location of embolism
Abstract
Background: Acute pulmonary embolism (APE) is a potentially fatal condition, and making a timely diagnosis can be challenging. Computed tomography pulmonary angiography (CTPA) has become the modality of choice, and this contributes to the increasing load on emergency room CT scanners. Our purpose was to investigate whether an elevated d-dimer cut-off could reduce the demand for CTPA while maintaining a high sensitivity and negative predictive value (NPV).
Methods: We retrospectively reviewed all patients referred for CTPA with suspicion of APE in 2012, and collected d-dimer values and CTPA results. We investigated the diagnostic performance of d-dimer using a 0.5 mg/L cut-off and an age adjusted cut-off. We also evaluated a new and elevated cut-off. Cases were categorized according to their CTPA result into: no embolism, peripheral embolism, lobar embolism and central embolism. Finally we investigated a possible correlation between d-dimer values and location of embolism.
Results: We included 1,051 CTPAs, from which 216 (21%) showed pulmonary embolism. There were concomitant d-dimer analyses in 822 CTPA examinations. The current 0.5 mg/L cut-off achieved a sensitivity and NPV of 99%. The age-adjusted cut-off achieved a sensitivity and NPV of 98%, and our suggested cut-off of 0.9 mg/L achieved a sensitivity and NPV of 97%.
Conclusions: We conclude that the elevated d-dimer cut-off of 0.9 mg/L achieved a high sensitivity and NPV, while reducing the number of CTPA by 27%. The correlation between d-dimer values and location of embolisms supports the suggestion of an elevated d-dimer value.
Methods: We retrospectively reviewed all patients referred for CTPA with suspicion of APE in 2012, and collected d-dimer values and CTPA results. We investigated the diagnostic performance of d-dimer using a 0.5 mg/L cut-off and an age adjusted cut-off. We also evaluated a new and elevated cut-off. Cases were categorized according to their CTPA result into: no embolism, peripheral embolism, lobar embolism and central embolism. Finally we investigated a possible correlation between d-dimer values and location of embolism.
Results: We included 1,051 CTPAs, from which 216 (21%) showed pulmonary embolism. There were concomitant d-dimer analyses in 822 CTPA examinations. The current 0.5 mg/L cut-off achieved a sensitivity and NPV of 99%. The age-adjusted cut-off achieved a sensitivity and NPV of 98%, and our suggested cut-off of 0.9 mg/L achieved a sensitivity and NPV of 97%.
Conclusions: We conclude that the elevated d-dimer cut-off of 0.9 mg/L achieved a high sensitivity and NPV, while reducing the number of CTPA by 27%. The correlation between d-dimer values and location of embolisms supports the suggestion of an elevated d-dimer value.